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Abstract. The k−ε turbulence model is a standard of computational software packages for engineer-
ing, yet its application to canopy turbulence has not received comparable attention. This is probably
due to the additional source (and/or sink) terms, whose parameterization remained uncertain. This
model must include source terms for both turbulent kinetic energy (k) and the viscous dissipation rate
(ε), to account for vegetation wake turbulence budget. In this note, we show how Kolmogorov’s rela-
tion allows for an analytical solution to be calculated within the portion of a dense and homogeneous
canopy where the mixing length does not vary. By substitution within model equations, this solution
allows for a set of constraints on source term model coefficients to be derived. Those constraints
should meet both Reynolds averaged Navier–Stokes equations and large-eddy simulation sub-grid
scale turbulence modelling requirements. Although originating from within a limited portion of the
canopy, the predicted coefficients values must be valid elsewhere in order to make the model capable
of predicting the whole canopy-layer flow with a single set of constants.
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1. Introduction

Two-equation turbulence models, such as the k − ε one, are derived from the so
called 1.5-closure model, which shares the assumption of an isotropic diffusiv-
ity with first-order closure models. In fact, both models collapse (Detering and
Etling, 1985) for the inertial-sublayer similarity. However, two-equation models
do not suffer from the same limitations as first-order turbulence models. The 1.5-
closure model for kinematic turbulent viscosity (νt ) can be matched (Lee, 1996)
with roughness sublayer measurements, while two-equation models have a multi-
dimensional modelling ability (Claussen, 1988). For these reasons, the k − ε

turbulence model is available within most software packages for turbulent flow
computations. In addition, the k − ε model can be used for large-eddy simulation
(LES) sub-grid scale turbulence budget modelling (Kanda and Hino, 1994). The
abilities of this model are due to the fact that νt is calculated from two flow prop-
erties: k and ε, for the k − ε model. Because of their direct influence upon νt , the
modelled budget equations for k and ε must account for vegetation wakes. This was
modelled by Green (1992) through additional source terms that have a significant
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influence, even downwind of the canopy (Liu et al., 1996). Source terms for k

and ε involve between three to four additional budget terms, whose dimensionless
coefficients lack a firm physical basis in some cases. This may explain the limited
use of k − ε models in micrometeorology, despite their potential.

2. Model Equations

2.1. THE k − ε MODEL

As a starting point, we consider a one-dimensional steady state, neutrally stratified,
fully developed surface boundary-layer flow within a dense and extensive planar
homogeneous canopy. Within the canopy, the modelled budget equation for the
mean averaged flow velocity (U ) is

0 = d

dz

(
νt

dU

dz

)
+ SU, (1)

where

νt = C
1
4
µ lmk

1
2 , (2)

and lm is the mixing length, and Cµ may depart from its standard engineering
(Cµ = 0.09) value for application to the atmospheric surface layer (Detering and
Etling, 1985). The modelled budget equations for k

0 = d

dz

(
νt

σk

dk

dz

)
+ νt

(
dU

dz

)2

− ε + Sk (3)

and ε

0 = d

dz

(
νt

σε

dε

dz

)
+ Cε1Cµk

(
dU

dz

)2

− Cε2
ε2

k
+ Sε (4)

depend on the Schmidt numbers for k(σk) and ε(σε), and on standard k − ε model
constants that default (Launder and Spalding, 1974) to (Cε1, Cε2) = (1.44, 1.92).
Apart from the source terms (S.), these equations are standard. The budget equation
for ε cannot be derived from the actual equations. It has been modelled (Equa-
tion (4)) consistently with k (Equation (3)) and the differential (Equation (6)) of
Kolmogorov’s relation

ε = C
3
4
µ

k
3
2

lm
, (5)
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which predicts that

dε

ε
= 3

2

dk

k
, (6)

when dlm
lm

≈ 0.

2.2. SOURCE TERMS

Because of a possible reduction due to leaf fluttering (Laadhari et al., 1974), the
viscous drag might be lower than expected within the canopy. Therefore, the vis-
cous drag can be assumed negligible compared to form drag. Consequently, SU

(Equation (7)) depends on the form drag coefficient (CX) for the canopy,

SU = −CX

2
U 2, (7)

where CX depends (Thom, 1971) on the one-sided vegetation surface density ap

(in m−1). We note that ap partly cancels (Massman, 1997) through a dimensionless
canopy drag coefficient (Cd) defined as CX = 2apCd (Wilson and Shaw, 1977). In
addition, vegetation elements break the mean flow motion into wake turbulence
with a smaller length scale than the shear-generated turbulence. Therefore the
canopy creates a net k loss (Green et al., 1995) despite wake enhancement of
the k generation rate. This process is due to the rapid dissipation of wake eddies
(Raupach and Shaw, 1982). It could be modelled (Green, 1992) with a source term
for k (Equation (8)), being the sum of the wake k production rate (∝ CX

2 U 3) with
a sink (∝ CX

2 Uk) to account for the short-circuiting of the turbulence cascade,

Sk = CX

2

(
βP U 3 − βdUk

)
. (8)

While βP (∈ [0, 1]) is the fraction of mean airflow kinetic energy lost by drag that
is converted into k, the dimensionless coefficient for the turbulence cascade short-
circuiting (βd ) has no clear physical basis (Green, 1992). For similar reasons, the
different models for Sε have little physical basis, beyond dimensional arguments.
The simplest Sε model (Equation (9)) is a logical extension of Kolmogorov’s
relation, which yields

Sε = Cε4
ε

k
Sk. (9)

An alternative model for Sε is that proposed by Liu et al. (1996), which states that

Sε = CX

2

(
Cε4βP

ε

k
U 3 − Cε5βdUε

)
. (10)
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This latter (Equation (10)) model was intended as an improvement of the simpler
(Equation (9)) Sε model that could not fit wind-tunnel data (Liu et al., 1996).
Moreover, this latter model (Equation (10)) agrees with the fact that the derivation
of Cε4 = Cε5 = 3/2 from the differential of the Kolmogorov relationship lacks a
clear rationale: the constant value 3/2 is valid for the bulk ε variation (dε), while
Sε is just a part of it. The different values (Cε4 = 1.5, Cε5 = 0.4) for the alternative
Sε model (Equation (10)) were justified by mixing length anisotropy. While mixing
length anisotropy and its variation in the vertical (Katul and Chang, 1999) might
be a limitation for k − ε models, the closure model (Equation (2)) predicts that
the mixing length anisotropy rather influences νt . Therefore, this latter Sε model
(Equation (10)) might be a palliative for yet undetermined reasons. Anyway, we
will herein retain Equation (10)) as a more general form than Equation (9) for Sε.

3. Derivation of Analytical Constraints

3.1. CANOPY FLOW VARIABLES

Within a dense and homogeneous canopy, far enough from any boundary, turbu-
lence length scale measurements indicate that lm does not vary significantly (Allen,
1968). With this assumption, the modelled momentum budget equation (Equations
(1) and (7)) predicts an exponential decay for U (Perrier, 1967), using a first-order
closure model,

νt = l2
m

(
dU

dz

)
. (11)

This latter exponentially decaying velocity profile is the solution of

dU

dz
= γ U, (12)

where

γ = CX

2

(
2α2)− 1

3 . (13)

This follows from a mixing length model that suits even second-order turbulence
modelling purposes (Wilson and Shaw, 1977),

lm = 2α

CX

(14)

and involves its own dimensionless coefficient (α), which need not depend on
vegetation density (Seginer, 1974). We expect that the 1.5-closure model of νt
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(Equation (2)) collapses to the first-order one (Equation (11)) in such a simpli-
fied case where both models should be equally valid. This collapse in formulation
allows k to be calculated from

k =
(

α
2

) 2
3

C
1
2
µ

U 2, (15)

while ε (Equation (16)) follows from Kolmogorov’s relation (Equation (5)) for high
Reynolds number flow,

ε = CX

4
U 3. (16)

3.2. SOURCE MODEL COEFFICIENTS

A substitution of the analytical expressions for flow variables (Equations (2), (12)–
(16)) within the k modelled budget (Equations (3) and (8)) leads to a relation

βd = C
1
2
µ

(
2

α

) 2
3

βP + 3

σk

(17)

that does not explicitly rely on CX or lm, and therefore might cancel any
dependence on vegetation density for the remaining coefficients. Similarly

Cε5βd = C
1
2
µ

(
2

α

) 2
3
(

Cε4βP − Cε2 − Cε1

2

)
+ 6

σε

(18)

derives from the ε modelled budget (Equations (4) and (10)). The above Equations
(17) and (18) do not provide enough constraints for the less meaningful coefficients
(βd , Cε4 and Cε5) to be calculated from the pair (α, βP ). Anyway, βP , βd , Cε4 and
Cε5 should obey any constraint through[

C
1
2
µ

(
2

α

) 2
3

Cε5

]
βP +

[
3Cε5

σk

]
=

[
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1
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(
2

α

) 2
3
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]
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+
[

6

σε

− C
1
2
µ

(
2

α

) 2
3 Cε2 − Cε1

2

]
(19)

implied by the previous relations (Equations (17) and (18)). Then, we intend to
derive a set of coefficient values with the widest generality. LES require βP ≈ 0.1
for sub-grid scale turbulence generation (Kanda and Hino, 1994), while published
k − ε models used βP = 1. Therefore, Equation (19) must be of a degenerate type
in order to be satisfied with a single set of constants for any βP value.
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Otherwise, each set of coefficients (βP , βd , Cε4, Cε5) for the solution of Equa-
tion (19) would be unique, and thus lose any generality. The coefficients of the
linear relations with βP on both sides of (Equation (19)) must then be equal. This
implies

Cε4 (= Cε5) = σk


 2

σε

− C
1
2
µ

6

(
2

α

) 2
3

(Cε2 − Cε1)


 (20)

and fixes Cε4 and Cε5 values independently of (βP , βd). This independence is
consistent with the modelled decoupling between Sε (Equation (10)) coefficients.
This finally checks that our estimates based on Equations (11)–(13), (15) and (16)
are particular model solutions when the mixing length (Equation (14)) is a constant
and Kolmogorov’s relation (Equation (5)) holds.

4. Conclusions

We derived two equations relating source term model coefficients. The former
Equation (17) predicts the coefficient βd for the turbulence cascade bypass within
the canopy as a function of the wake k production coefficient (βP ), the dimension-
less product (α) of the mixing length with the drag coefficient, and standard k − ε

model constants. Equation (20) gives the coefficient Cε4, which relates the source
term for dissipation (Sε) to that for k (Sk). Equation (20) has been designed to suit
a broad range of canopy densities and LES sub-grid scale turbulence modelling,
through its independence of (βP , βd ). Equation (20) asserts that Cε4 is a constant
for any given set of standard k − ε model constants, if α also is a constant. These
relations are required, but are not necessarily sufficient for the prediction of a high
Reynolds number flow within the canopy. These expressions rely on a particular
solution of the 1.5-order closure model within the canopy, and this analytical solu-
tion might help us derive similar expressions for various two-equation turbulence
models, by analogy. Moreover, the substitution of this solution within modelled
budget equations proves that Equation (10) for Sε induces an implicit dependence
between model coefficients. This dependence is not consistent with the reported
forms for Sε. This Sε model has been shown to improve k predictions, in contrast
with the model (Equation (9)). Among the possible explanations for Equation (9)
failure, we note that the pair (βP , βd) = (1, 4) of values used to diagnose Equation
(9) failure do not obey Equation (17). Moreover, setting βP = 1 implies that no
mean kinetic energy is lost by viscous drag. This latter assumption seems unreal-
istic, though the βP value might be significantly higher than 0.5 in most cases and
possibly varying with vegetation density.
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